Reprogramming of avian neural crest axial identity and cell fate.

نویسندگان

  • Marcos Simoes-Costa
  • Marianne E Bronner
چکیده

Neural crest populations along the embryonic body axis of vertebrates differ in developmental potential and fate, so that only the cranial neural crest can contribute to the craniofacial skeleton in vivo. We explored the regulatory program that imbues the cranial crest with its specialized features. Using axial-level specific enhancers to isolate and perform genome-wide profiling of the cranial versus trunk neural crest in chick embryos, we identified and characterized regulatory relationships between a set of cranial-specific transcription factors. Introducing components of this circuit into neural crest cells of the trunk alters their identity and endows these cells with the ability to give rise to chondroblasts in vivo. Our results demonstrate that gene regulatory circuits that support the formation of particular neural crest derivatives may be used to reprogram specific neural crest-derived cell types.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fate determination of neural crest cells by NOTCH-mediated lateral inhibition and asymmetrical cell division during gangliogenesis.

Avian trunk neural crest cells give rise to a variety of cell types including neurons and satellite glial cells in peripheral ganglia. It is widely assumed that crest cell fate is regulated by environmental cues from surrounding embryonic tissues. However, it is not clear how such environmental cues could cause both neurons and glial cells to differentiate from crest-derived precursors in the s...

متن کامل

JNK-dependent gene regulatory circuitry governs mesenchymal fate

The epithelial to mesenchymal transition (EMT) is a biological process in which cells lose cell-cell contacts and become motile. EMT is used during development, for example, in triggering neural crest migration, and in cancer metastasis. Despite progress, the dynamics of JNK signaling, its role in genomewide transcriptional reprogramming, and involved downstream effectors during EMT remain larg...

متن کامل

Regulative capacity of the cranial neural tube to form neural crest.

In avian embryos, cranial neural crest cells emigrate from the dorsal midline of the neural tube shortly after neural tube closure. Previous lineage analyses suggest that the neural crest is not a pre-segregated population of cells within the neural tube; instead, a single progenitor in the dorsal neural tube can contribute to neurons in both the central and the peripheral nervous systems (Bron...

متن کامل

Trunk Neural Crest Has Skeletogenic Potential

During early vertebrate development, neural crest cells emerge from the dorsal neural tube, migrate into the periphery, and form a wide range of derivatives. There is, however, a significant difference between the cranial and trunk neural crest with respect to the diversity of cell types that each normally produces. Thus, while crest cells from all axial levels form neurons, glia, and melanocyt...

متن کامل

Regulation of the neural crest cell fate by N-myc: promotion of ventral migration and neuronal differentiation.

During neural crest development in avian embryos, transcription factor N-myc is initially expressed in the entire cell population. The expression is then turned off in the period following colonization in ganglion and nerve cord areas except for the cells undergoing neuronal differentiation. This was also recapitulated in the culture of Japanese quail neural crest, and the cells expressing N-my...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Science

دوره 352 6293  شماره 

صفحات  -

تاریخ انتشار 2016